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Dual solutions of the Greenspan-Carrier equations I1 

By K .  STEWARTSON AND D.  H. WILSON 
Department of Mathematics, The University, Durham 

(Received 7 August 1963) 

Numerical integration of the boundary-layer equations associated with flow 
past a semi-infinite flat plate in the presence of an aligned magnetic field has 
shown that the solutions are not unique if B < 1 for certain values of p < 1, 
where B is an intrinsic property of the fluid and p a property of conditions at 
infinity. An analytic explanation of this phenomenon is given here. The main 
properties as p -+ 1 of the unique solutions when B > 1 are elucidated. Further, 
the equations associated with flow past a solid boundary in which the magnetic 
field is zero are solved numerically. The solutions appear to be unique but, on the 
other hand, the maximum vaIue Po, of b, for which they can be found, tends to 
zero with B. 

1. Introduction 
I n  their study of the flow of a highly conducting, almost inviscid, incompres- 

sible fluid past a thin flat plate in the presence of a magnetic field which is uniform 
a t  infinity and parallel to the stream, Carrier & Greenspan (1959) showed that 
the velocity and magnetic field in the  boundary layer on either side of the plate 
depends on the solution of the pair of linked ordinary differential equations 

(1 .1  a,) 

( l . l h )  

subject to the boundary conditions 

f1(O) = f ; ( o )  = gl(0) = 0) f;(m) = gi(C0) = 8. (1.2) 

In these equations the independent variable 

= $ y ( U / v r ) ~ ,  

where y measures distance from the plate, x distance along the plate from the 
leading edge, U is the undisturbed velocity and v the kinematic viscosity. Further, 
if u, H, are the x-components of the velocity and magnetic fields, 

= i‘fi(v)9 Hz = i H 0 g ; ( v ) 7  

where H,, is the strength of the undisturbed magnetic field. Finally 

p = H;/4 i~pU’ ,  B = 4iTOX’, (1.3) 

where p is the density, g the conductivity of the fluid, whose permeability is 
taken to be unity and where Gaussian units have been used throughout. The 
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boundary conditions in (1.2) are familiar to students of boundary-layer theory 
except possibly gl(0) = 0 which is necessary by symmetry and the assumption 
that the plate is of zero thickness. 

The solution of (1 .1)  subject to (1.2) we shall refer to as Problem I. It has been 
shown (Carrier & Greenspan 1959; Reuter & Stewartson 1961; Meksyn 1962) that 
it has no solutions for all e > 0 if p > 1, while Glauert (1961) has examined the 
solution when e > 1 and e < 1.  I n  a very recent paper with the same title as 
this one, Wilson (1964) has shown numerically that if 0 < B < 1 the solution of 
Problem I is not unique for a range of values of p and in this paper we wish 
to offer some analytic arguments in support of his work. 

A second problem, Problem 11, can be set up by changing the boundary con- 
ditions in (1.2) to 

where the functions f,, g, otherwise have identical properties to fi, gl. This prob- 
lem arises in considering the flow past a thin non-conducting cylinder (but not 
of zero thickness) on the assumption that the magnetic field inside the cylinder 
is zero. This model, proposed by Sears & Resler (1959) has been the subject of some 
controversy (e.g. Stewartson 1963), but since it has not yet been completely 
resolved there is some value attached to studying Problem I1 in this context. 

f2(0) = fb(0) = g@) = 0, f b ( . O )  = gh(C0) = 2,  (1.41 

It proves convenient to study 
f “’ + f f  - gg“ = 0, (1.5a) 

g“ + e(fg’ - gf ’) = 0, (1.5b) 
subject to f ( 0 )  =f ’(0) = 0, f ( 0 )  = p ,  (1.6) 
and either g(0) = 0, g’(0) = Q (1 .7u)  
or g(0 )  = r ,  g’(0) = 0, ( 1 . 7 6 )  

from which the solutions of Problems I or I1 can be found by suitable scaling 
operations (Wilson 1964). This was, in fact, how the numerical integrations were 
carried out, and it is noted that without loss of generality q or r may be set equal 
to unity. 

The division of work in this paper is that one of us (D. H. W.) is responsible for 
the numerical integrations and the other (K. S.) for the analysis. 

2. Classification of singularities 
Since the numerical procedure adopted here and explained in the earlier paper 

by Wilson (1964) is step-by-step, it is important to know the singularity, either 
a t  7 = co or a finite value, which terminates the process. The classification 
which we now give seems to be complete, except possibly when e = 1, but 
it must be borne in mind that our approach is heuristic and we cannot prove the 
list to be all-inclusive. 

( a )  The singularity in f is  independent of g 
Here we assume that near the singularity gg” may be neglected in ( 1 . 5 ~ )  so that f 

An appropriate form for f near the singularity is 
satisfies f ” + f f ”  = 0. (2.1) 

.f = A,(r - 7*)Or1, (2.2) 
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where a,, A,, q* are constants: if we are considering the behaviour off near a 
singularity at afinite value of ,v, that  value is r/*, but ( 2 . 2 )  is also relevant if we are 
considering the behaviour off as 7 + a. On substituting in (2.1) we find that 
either 

a = 0 ,  A ,  arbitrary, (2.3a) 

or a =  1, A,,  ‘1” arbitrary, (2.3h) 

or a = - 1, A, = 3, TI* arbitrary. ( 2 . 3 C )  

In the first two cases the singularity clearly occurs a t  infinity. On checking 
for consistency by substituting ( 2 . 2 ) ,  (1.3a) or (2 .3b )  into (1 .56)  we find that it is 
obtained in general of A ,  > 0. For A, < 0 consistency is only possible if g“ = 0. 

In the third case the behaviour of g near 7 = TI* is found by substituting ( 2 . 2 )  
into (1.5b) which becomes 

( q  - q * ) 2  g” + 3€[(T - ‘1”) g’ + g] = 0 

9 B,(7- T * ) Y ,  

near TI = q*; therefore 

where B, is arbitrary and 

i.e. y = y,, y 2  where 
~ ( 7 -  1 ) + 3 ~ ( y +  1) = 0, 

(2.4) 

( 2 . 5 )  

y1 = - 4 ( 3 ~ - 1 1 ) + 4 [ 9 ( ~ - 1 ) ~ - 8 ] ~ ,  y 2  = --+(%- l)-+[Q(c-l)’-S]*.  (2.6) 

If 0 < e < 1 - 3 4 2 ,  both values of y are real and greater than - 1 ; hence 
1gg”l 4 (7 - )7*)-4 as q+q* and may be neglected, in the neighbourhood of q = q*, 
in (1.5a). If 1 - + 4 2  < c < 1, y is complex so that g oscillates either finitely or 
infinitely near q = q* but Re y > - 1, implying that gg“ is still negligible in (1.5a). 
The assumptions about the singularity are therefore consistent for all e < 1. 
Further, it is known for (1.7 a)  and by extension for (1.7 b)  (Reuter & Stewartson 
1961) that i fp  > 0,f” > 0 for all q. Hence the singularity characterized by ( 2 . 3 ~ )  
cannot occur if p > 0. 

011 the other hand if c > 1 a t  least one of the possible values of y has a real 
part less than - 1 which implies that as q --f q*, 1gg”l 3 I f f ” l  in general, which is a 
contradiction. 

It is concluded that the singularity described by ( 2 . 3 ~ )  (2.6) is only possible if 
E <  l a n d p < O .  

( 6 )  The singularitics in. f, g are interdependent 

This is only possible in general iff z g near the singularity. We assume, therefore, 
that 

( 2 . 7 )  

near the singularity where C,, S,, are constants, a2 > 6, if a2 > 0 and az < S2 
if a, < 0. If the singularity occurs a t  a finite value of q,  that value is to be q*. 
On substituting into (1.5 b )  we have 

f 2: d,(q - q * p ,  f -  g ‘v C,(q - q*)% 

A2a2(a2- 1) (7- q*)--2 = eB2C2(a,-Q,) (7- v*)aZ+- 

so that 6, = - 1 and C2 = -az(a2- l ) / e (az+  1).  (1.8) 
22-2  
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Further, on substituting into (1.5a), (2.7) is consistent provided 
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a& - 1) (a,  - 2 )  = &,(a, - 1) [az(a, - 1) + S ] / E ( a ,  + I), 
1.e. a, = 0) (2 .9a )  

or a2 = a 3 , a 4 ,  (2.9c) 

(2.10) 

or az= 1, (2 .96)  

where 
The first two cases require that the singularity occurs a t  infinity and are other- 
wise identical with (2 .3a) ,  (3.36). Thus A ,  > 0. 

If e > 1 the positive root a3 indicates a singularity a t  infinity, the value of 
9" being irrelevant to its character. On the other hand, the negative root a4 
indicates a singularity at a finite value of 7 and it is noted that (a31, la4\ > 1 so 
that we have consistency. I n  both of these casesf > 0 near 7 = y* is possible, 
since A ,  is arbitrary, and they can therefore arise if p > 0 in (1.6).  

I f  E < 1 both roots for a are complex so that f ' ,  g" oscillate as 7 --f ?I*. Hence 
they cannot arise in a numerical integration with p > 0. Further, since Re a = +, 
f z g near the singularity only if it  occurs a t  infinity. 

u3 = 4 + $ [ ( 9 E  + 7 ) / ( €  - 1)]4 a4 = J - g ( 9 S  + 7 ) / ( E  - 1)]9. 

3. Dual solutions of Problem I. (i) 0 < E < 1 

Although the numerical solutions obtained were carefully checked the existence 
of dual solutions of (1.  l ) ,  ( I  .a) is certainly surprising and in order to promote con- 
fidence in their existence we offer in this and the next section some analytic 
arguments in support of the computations. The basis for the arguments is that 
the classification of singularities in the previous section is complete, which means 
that if f " ( 0 )  > 0, f '  and g' must tend to limits as 7 --f co. 

Suppose we fix q = 1 in (1.7a) and let p decrease from infinity. So long as 
p is not small we can expect g'(co) N 1 while f'(Oo) - p$  when p is large. Conse- 
quently, the appropriat'e value in (1.1 a) of 

P = [g'(w)/f '(a)], (3.1) 

N p-4 as p --f w; we can expect it to increase initially asp decreases from infinity 
and to tend to a limit Po(€) as p + 0. In  this section we shall discuss the limit 
solution a s p  4 0 and in the next we shall show that maxp > Po when E < 1. 

Here, then, p < 1. Write 
p = 2eyg exp ( - 4~; Je), ( 3 . 2 )  

where yo + 1. If 7 = O(1) the variation of g' can be neglected, since 9" = O ( p ) ,  
and so cantff". The governing equations then reduce to 

with solution 
f ' / I  = ?lo", g" = qf 'f (3 .3)  

(3 .4a )  

(3.46) 

(3.5 (I ) 

( 3 . 5 6 )  

,f"' = E$, exp ( - 47; ,/E) [exp (&r2 J E )  + exp ( - i y 2  J E ) ] ,  

g" = ehj$ exp ( - $7: +) [exp (47, Jc) - exp ( - 3 ~ 1 2  &)I. 
When 7 is large but O( I), 

f = (7i/Y2) exp {& &I2 - 731 c1 + O(7-2)1? 

9 = 9 + ( ? / @ / V 2 )  exp (8 J e ( r 2  - 731 [ 1 +  O(T2)1* 
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Now write 3 = 710+5/110 (3.6) 

and suppose that 5 = O( 1) .  Then when f is large and negative, 

f =  ?loe:t'~[l+O(t/;2)], g = ~ , [ 1 + e ~ e ~ ~ ~ { 1 + 0 ( ~ , 2 ) } ]  ( 3 . i )  

from ( 3 . 5 ) ,  while when f z 1 we must expect the terms neglected in (3.3) to be 
significant. Since, from (3.7) f ,  g = O(%) when f = 0(1), write 

.f = ToFo(0 ,  !7 = 70Go(fL (3.8) 

Fo( -a) = 0 ,  Q(,( -a) = 1 (3.9) 

whereupon F,, Go satisfy equatioiis identical with (1.5) subject to boundary 
conditions 
in the limit 7, + 0. 

For < large and negative 

These equations have been iiitegrated numerically for c = 0.01, 0.1, 0.5 and i t  is 
found, as forecast in $ 2 ,  that FA, GA tend to finite limits as f + co. The method of 
integration was to use the series expansion (3.10) to obtain the values of F,, G,, 
and their derivatives a t  a finite value of 5 and then to continue the integration 
using the standard step-by-step procedure. One might expect FA, GA to tend to 
finite limits, for initially F{ > Gg so that Fo is initially increasing faster than Go 
and may therefore eventually be expected to overtake it, whereupon F,"' will 
be negative and reduce Pi to zero. The situation is quite different if F > 1, for 
initially G,, F, are dran-ing farther apart. It is likely that for all c > 1, Fo, G,) 
develop singularities of the type (2.10) a t  some finite value of 7. 

The general shape of the graphs off, g found in the numerical solution with 
p < 1 agrees with the above argument in having a long section in which f " ,  g" 
are small followed by a short zone in which f " ,  g" are highly peaked (Wilson 1964, 
figure 3) and in 11 hich the majority of the increase of j ' ,  g' occurs. I n  order to  
satisfy the boundary conditions of Problem I when 7, & 1, a simple affinc trans- 
formation shows that if 

g;(O) = %]R'[e;)(XJ)]-', .f';(o) = 2Seexp ( -  571; \/e) [F'(oo)]-;, (:I. 11) 

= Po = [G~(x I ) /FA(co) ]~ .  (3.12) 

then in the limit qo 4 0, Jl, g1 are solutions of ( 1 . 1 )  with 

A graph of /lo against c is shown in figure 1 for 0 < F < 1. Further, if P-p0 
is small the appropriate value of T~ may be estimated as follows. If T,, is large, we 
see from ( 3 . 7 )  that the required form for f ,  g differs from (3.9) by proportionate 
terms O(yt2) .  Consequently we expect the proportionate changes in FA(co), 
GA(m) to be O(702), which implies that 

P-Po = A371g2, (3.13) 
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FIGURE 1. Graph of Po, the cnt-off value of‘ ,8, against, t‘ (6 1). 

1.0 
P 

FIGURE 2. Graphs off”(0) against P for va.rious E .  ~ , Problem I, 
g(0) = 0 ;  . . a > . . ,  Problem 11, g’(0) = 0. 
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where A ,  is a function of E only. Hence in Problem I, when /?-Po is small, 

f ; l ( O )  ~exP[-A34~/2(P-Po) l>  g;P) a @ - P o ) ;  (3.14) 

the factors of proportionality depend on e which is assumed to be neither zero 
nor unity. The lower halves of the curves offi(0) against P displayed in figure 2 
agree with (3.14) in that they have very flat tangents. The curves for g;(O) 
(figure 3) show a rather anomalous behaviour which can, however, be reconciled 
with (3.14). Their shape is made more plausible in the next section. 

-fi 10 \ \  

P 
FIGURE 3. Problem I: graphs of gi(0) against P for varioiis E .  

4. Dual solutions of Problem I. (ii) E + 1, 0 

we show that duality occurs if E < 1. 
I n  this section we examine the properties of Po as e + 1, 0 and from the 

(a )  e = 1 
Here there is a simple solution of (1.5) subject to (3.0), viz. 

and clearly 

second 

(4.1) 

(4.2) 
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( b )  8 4 1 

The expansion (3.10) suggests that we write 

F, = dF1(<), Go = 1 +€GI(<), < = 5 & (4.3) 

and consider values of < = O(1). The equations satisfied by F,, G, in the limit 
c + 0 are 

and, when < is large and negative, an appropriate form for the solution is 
F - e5 - 1_& + -5- $ 6 . .  . , 
G - e5--1,g2L'+-5Te35.... 

1 -  6 144 

1 -  1, 43.2 

(4.4) 

(4.5) 

The differences between (4.5) and (3.10) can be accounted for by a shift of 
origin of < of amount +log c .  As < --f a3 i t  is consistent to neglect FF in (4.4) 
whereupon 

C3 being a constant to be found from a numerical integration of (4.1). The other 
kind of singularity of F,, given by ( 2 . 3 c ) ,  is excluded because Fk > 0 when cis  
large and negative and is therefore always positive. Thus on leaving the zone when 
5 = O ( l ) ,  Fh is increasing logarithmically. In  order to find its actual limiting 
value we must therefore adjoin an outer region to this one, in which 

= i:+ = <#J 4. (4 .7)  

is of order unity and Q < 1. Hence h = 0 corresponds to < 4 co and the boundary 
conditions on Fo, Go as h --f 0 are 

.:A 

$ 4  'I Fo !? $[log$+loglog- 1 +---[ logh+c3]+ ..., 

G:, N 1 +Or$lOg;). 

( l .S )  

(4.9) 

A consistent expansion scheme may now be set up on writing 

$5 = e:[h log c-1 + g log 4 log "-11: 

Fo = ($I€&) [F2,0 + (I/lOg E-') F2,1 + ... 1, 
(4.10) 

(1.11) 

Go = Gz,o+(I / log~-1 )G2 ,1+ . . . ,  

where the Fz, G, are functions of h only. On substituting into (1.5) the leading 

(4.12) 

with boundary conditions 

F2,0(o) = 0, FH,JO) = 1, G,,,(O) = 1, (7; o(0)  = 0. (4.13) 

The appropriate solution of (4.12) is 

The next terms can formally be calculated yuite easily. Thus Fz, satisfies 

Fz,oF;,l = GZ,OGi,O (4.15) 
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F2,, 2: Alogh+C3A as A + 0. 
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(4.16) 

Hence PH. , = exp ( - A2) log h + 2 A, log A, exp ( - A:) d h ,  SD” 
so that F;,,(CO) = 4~-4?1+C3+ 1, (4.18) 

where y = 0-577 ... is Euler’s constant. 

(4.14) that 
On leaving the range of values of .$ for which h = O( l) ,  i t  follows from (4.11), 

3’; = dFo/df + c [3  log E - , +  log (&log E - ~ ) ]  [ 1 + O(l0g E-’)-’] ,  (4.19) 

and thereafter F;, G; remain constant. Hence 

Po ‘v n/(log e-1 +log +log E - , )  as e + 0 (4.2 1) 

and, as forecast, tends to zero with E .  The shape of the graph in figure 1 near 
E = 0 agrees with (4.21). After the work described in this paper had been carried 
out, the authors learned that a result similar to (4.21) had already been obtained 
by Mr M. B. Glauert (private communication, 1963). 

This discussion can be used to estimate the behaviour of g’(0) in Problem I 
as P + Po for E < 1.  The chief effect of a small change in the initial conditions, 
when 6 is small, is to change the value of C, in (4.6). Consequently AC3 - 702 
and it then follows from (4.1 l ) ,  (4.18) that the corresponding proportionate 
changes in F;(oo), G;(oo) - [7;loge]-l so that the actual change in p, from Po, - [v0 log E -  1]-2. It is concluded that 

so1 - (log. (P -Po)&, 
whence in Problem I 

(4.22) 

where a is a positive const’ant, as p + Po with e < 1. It is noted that gi(0) has an 
almost vertical tangent a t  ,8 = Po for small E ,  which makes more plausible the 
behaviour of gi(0) on the lower portion of the graph displayed in figure 3. 

This discussion can also be used to show that duality of solution occurs in 
Problem I if E < 1. For it has already been shown (Glauert 1961) that provided 
E is sufficiently small there is a solution of Problem I for any /3 < 1 in which 
gi(0) z 1 and we now have found solutions for E < 1 in which gi(0) FZ 0. The 
numerical results show that the graph of gi(0) against p i s  complicated when e 1 
and it is not clear what its shape is in the limit E 4 0. 
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5. Solutions of Problem 11 when E < 1 
These have been computed numerically for e = 0.01, 0.1, 0.5, 1.0 and the 

corresponding values offi(O), g2(0) are shown in figures 2 and 4. For a given E < 1,  
the maximum value of P occurs a t  Po, when fL(0) = 0. This is not surprising, for 
the problem posed, whenfi(0) = 0 + , is identical with that in (3.8) except for the 

1 *o 

0 0.5 1 *o 
B 

FIGURE 4. Problem 11: graphs of' gz(0)d  against B for various F.  

(infinite !) shift of origin. The value of g2(0)  at /3 = Po is not zero. Using the nota- 
tion of (3.8) it is given by 

and we have 
92(0) = [ 2 / W a ) 1 3  FA(a)lCr'A(a), (5.1) 

g2(0) 2: 2(7~e)-*[l+O(l/log~-~)] as p+P0 with 6 < 1, ( 5 . 2 )  

using (4.19), (4.20), 
g2(0) + 0 as p + p 0  with e = 1 (5 .3 )  
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using (4.1). The solutions seem to be unique if E < 1,  and as p + 0 

( 5 . h )  

( 5 . 4 b )  

The reason for (5.46) is not known. 

6. Solutions of Problem I when E > 1 
Typical solutions have been computed by Carrier & Greenspan (1959) and 

our object here is to show that, a s p  --f 1 - ,fi(O), g;(O) + 0. From $ 2  we find that 
if E > 1 there are three possibilities in general: either fi N A,?] as 7 -+ 00, or 
fl N A,ya3 as 7 -> 00 orfl - A,(7* - 7 ) “ 4  as y + 7” - where a, > 0 > a4 are given 
by (2 .10) .  Fixing g;(O) = 1 and letting p vary (see (1 .6)) ,  we can expect there to 
be a critical valuep,, ofp, such that ifp > p ,  the first possibility occurs, the second 
if p = p ,  and the third if p < po. The number p o  0 is a function of s and from 
(4.1) we see that po(l) = 0. If E 1 we can adapt Glauert’s (1961)  argument to 
findp,, as follows. Divide the range of 7 into two of which the inner has thickness 
N (sp)-i. In  the inner range write 

f = ~ % p f r F , ( ~ ) ,  g = ( ~ p ) - i  G3(x) ,  31 = ~ ( E P ) + .  (6 .1)  

Then (1.5) reduces to 

and 

with G3(0) = 0, G;(O) = 1. When x is large 

F: = 0 ,  i.e. F, = $xz  
Q‘“ 3 + 4x’GCj - xG, = 0, 

G, 2: 1*OS9(&xz). 

Subsequently g = 1-089&p-8f 
and ( 1.5) reduces to 

f”’+ff“[l- 1 * 1 8 5 ~ g p - t ]  = 0. 

A solution can therefore be found in which f - d , ~  as 717 --f 00 only if 

(6.2) 

(6 .3)  

(6.6) 

p > p ,  = 1 . 1 3 6 ~ k .  (6 .7)  

The critical solution with p = p ,  and f N A 2 p  when 7 is large can be used to 
find the behaviour off;(()), g;(O) as /3 + 1 - . When 1 - p < 1 the range 0 < 7 < 00 

is divided into two zones. 

(a )  Ozcter zone, y N ( 1  -/J’-j 
Here write 

f 1 =  (1-B)-”4(.I..), 91 =f1+(l-p)*f14(x), 7(1-/3).t = s. (6.8) 

Then on substituting into (1 .1)  we obtain 

(6.9U) 

(6.9~5) 

neglecting terms proportional to ( 1  - I),. The boundary conditions a t  infinity 

E1;+2, H 4 + 0 ,  (6 .10)  are 
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(6.11) 

In the solution required, all derivatives of F,, H4 are finite and it can therefore 
only come to an end when F4 = 0. Without loss of generality we can suppose that 
F4 = 0 at  x = Oand that near x = 0 

F4 = AqX"2,  (6.12) 

where A ,  > 0, a2 2 1 are constants. Then, on substituting into (6.11) 

H, r: ccz(a2 - l) /s(az + 1) x ,  (6.13) 

and on substituting (6.12), (6.13) into (6.90) 

a ~ - c c , + 3 ( 1 + ~ ) / ( 1 - ~ ~  = 0 or a2 = 1;  (6.14) 

(6.13), (6.14) are identical with (2.8), (2.9). The first possibility leads to an 
acceptable solution if E > 1. The alternative is that a2 = 1, in which case 

For x small it follows that 
N4(0) = c4 $: 0. 

6 ( € -  1) 1 
l + C  X 

F4= A,X+&E,~,C,X~+ ..., H,=C,---Cixlog-+ ..., (6.15) 

so that again the condition under which (6.9) was derived fails, this time because 
11; --f co. In  a numerical computation starting from x = co there is essentially 
only one disposable constant, say B,. Consequently there is a range of values of 
B, such that F4 = A,x near x = 0, another in which F, +- co for finite x as de- 
scribed in (2.10) and a critical value such that (6.12) holds with a2 = a3 and 
F; + 0 as x --f 0. This last solution can be matched to an inner solution of the 
kind described at the beginning of this section. 

( b )  Inner xoxe 
In  this zone write 

f, = 0 p 5 m  $7, = OG,(y), Y = ?P, (6.16) 

where Pi(0) = pa ,  GL(0) = 1 and 0 is a scaling factor to be found but which is an 
order of magnitude larger than (1 - @)&, for consistency. Since in this solution 
q5 =k G5 at finite values of y we may replace /3 in (1.1) by unity and as y + co 

F5 2: A5ya3, F5-G5 2: a3(a3- l ) / e ( l + a , ) y ,  (6.17) 

and we can therefore matchf,, g1 a t  y = co (6.17) with!,, .Q, at  x = 0 (6.12, 
6.13) provided only that the scaling factor @ satisfies 

A4(1  - / j ) h 3 - 3  = A 5 /3x3+1. 

Henceasp -+ l - , s>  1, 
(6.18) 

f ; (o)  @F;(O) = p0(A,/A5)31("3+1) (1  --/3)3(~3-1)12(~3+1), ( 6.1 9 G I )  

g ; (O)  r: 02G;(O) = (Aq/A5)2i(a3+1) (1  -/3)(x3-1)1(~3- 1). (6.1Yb) 

These results are in agreement with Glauert's (1961) in the limit c --f co. As E --f 1, 
a3+co so that the detailed argument is unsatisfactory. However, we note 
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that, using a different approach, Carrier & Greenspan (1959) showed that if 
E = l  f;(o) N (1 - [log (1 - p)-']$ (6.20) 
a s p + l - .  

7. Discussion 
Consider first the flow of a highly conducting, almost inviscid fluid past a fixed 

semi-infinite flat plate of zero thickness and in the presence of an aligned field. 
Here Problem I is relevant and the present state of the theory is that unique 
solutions can be found for all /l < 1 provided E 2 1. This means that if the AlfvPn 
speed is less than the undisturbed fluid speed, so that outside the boundary 
layer disturbances cannot travel upstream, then the flow properties can be found. 
Further,asP + 1 - , theskinfrictionandthemagneticfieldintheplate tendtozero. 

< 1. 
For P < Po there is also a unique solution while if p > p1 no solutions can be 
found. The physical explanation of the non-existence if < /3 < 1 is not clear 
because there is still no upstream propagation of small disturbances possible. 
It is noted that p1 > z 0.95 for all E < 1 so that this zone is quite narrow. Finally, 
if Po < P < PI, two solutions can be found of which one has an extremely small 
skin friction and the boundary layer is virtually detached from the wall. Pre- 
sumably the solution with the larger skin friction and which is the continuation 
of the solution with p < Po occurs in practice. 

Secondly, consider the flow of a highly conducting almost inviscid fluid past 
a non-conducting body in the shape of a thin cylinder and in the presence of a 
magnetic field parallel to the stream a t  infinity. Further, it  is assumed that 
outside the boundary layer the velocity and magnetic fields are parallel every- 
where and that the magnetic field in the body is zero. This description is contro- 
versial (e.g. see Sears & Resler 1959; Stewartson 1963) but since the controversy 
is still not completely resolved it is of interest to examine the boundary layer 
associated with it. Assuming that the body is thin but still much thicker than the 
boundary-layer thickness, Problem I1 is appropriate. For values of E 2 1 one 
expects, by analogy with Problem I, that unique solutions can be found for all 
p < 1 : incidentally the basic theorem of this theory (Hasimoto 1959) was derived 
for E = m and is of the same kind as the result here. For E < 1 solutions can be 
found only if p < Po(€) where Po( 1) = 1, pO(O) = 0 so that the model is of limited 
relevance. In particular, in terrestrial problems E < 1 (e.g. e N lo-' for mercury) 
and so the work of this paper suggests a contradiction for such flows unless the 
magnetic field is relatively small. 

If E < 1 then there are two relevant numbers Po, p1 such that 0 < Po < 
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